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Abstract. This paper investigates the dispersion relation and the time and space damping 
rates of the high-frequency surface waves propagating on a warm homogeneous non- 
isothermal current plasma bounded by a vacuum. The description is done on the basis of 
a kinetic plasma theory under the specular reflection condition for particles at the plasma- 
vacuum boundary. 

I .  Introduction 

In a number of works (Romanov 1964, Gorbatenko and Kurilko 1964, Kondratenko 
1965, Romanov 1968, Guernsey 1969, Kondratenko 1972, Barr and Boyd 1972) on the 
basis of a kinetic theory the dispersion and the time damping rate of the high-frequency 
surface waves propagating on the plasma-vacuum boundary have been obtained. The 
electrostatic and electrodynamic considerations that have been treated include a plasma 
with different geometries (semi-bounded plasma, layer or cylinder). The boundary 
conditions used are perfectly reflecting walls or a diffuse plasma-vacuum boundary. 

Recently, in some experimental work on surface waves, results on the propagation 
of surface waves in a current plasma have been reported (AniEin et a1 1973). They have 
established that the downstream wavenumbers are smaller than the upstream wave- 
numbers and the downstream wave is less attenuated than the upstream wave. The 
present theoretical paper explains these results. Here we obtain the dispersion relation 
and the time and space damping rates for high-frequency surface waves. We use a warm 
non-isothermal current plasma model which is very similar to  laboratory discharge 
plasmas. To simplify the theoretical treatment, we examine a homogeneous plasma 
filling up a half-space and bounded by a vacuum. 

2. Formulation of the problem 

Let the half-space x > 0 be occupied by a warm homogeneous two-component current 
plasma and the plane x = 0 be the boundary plasma-vacuum surface. We assume 
that the electrons and the ions of the plasma drift in opposite directions and the velocity 
of their directed motion is parallel to  the boundary surface x = 0. As we will investigate 
the propagation of high-frequency waves only, we neglect directed motion of the ions 
and consider that the electrons drift with the same velocity V. This allows us to examine 
the electron component of the plasma as a beam penetrating through the immovable 
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background of ions. We suppose that a narrow transition layer Ax exists at the plasma- 
vacuum surface just to  x =0, in which the plasma number density changes to  0. Really 
this layer is a Debye plasma length in extent. Since we shall be interested only in waves 
with wavelengths larger than the thickness of this layer (in this case the Landau damping 
of the propagating longitudinal waves is not strong) we can assume the plasma-vacuum 
surface is sharp enough. 

In order to  obtain the dispersion equation for the high-frequency surface waves in an 
electrostatic approximation, we describe the dynamics of the plasma by the linearized 
Vlasov and Poisson equations : 

a f l a  e 
- + U ,  V,fla + > E .  V,foa = 0 
at mm 

div E = 4np(x, R I , )  

where e, and ma are the charges and the masses of the particles of type a respectively 
(a = e, i), E is the electric field ofthe perturbation in the plasma,fla = fla(x, Rl l ,  u x ,  u , ~ ,  t )  
are the perturbations in the velocity distribution functions of the particles, where x, R I ;  
and u x ,  U are the position variables and the velocity components of the particles parallel 
to the axis Ox and the boundary surface x = 0 respectively: fool = f O a ( u x ,  ul l )  are the 
equilibrium distribution functions and 

p (x j~ I I )  = ~ p a ( x , ~ l l )  a = ~ e a S d ~ ~ l a ( x , R ~ ~ , ~ x , ~ ~ ~ , r )  a ( 2 )  

is the perturbation of the plasma charge density. 

taking into account the directed electron velocity : 
We assume that the equilibrium velocity distribution of the particles is maxwellian 

where Ta is the temperature of the particles of type c( (T << T,) and ne = ni  = no are the 
equilibrium number densities of the electrons and the ions. 

In accordance with the geometry of the system the perturbed electrostatic field E 
may be written in the form : 

E = -grad$ (4) 
where 

is the potential of the plasma perturbation. 

plasma-vacuum boundary (the plane x = 0) : 
The boundary condition for the problem is perfect reflection of the particles from the 

f1,(O,RIl, - v x , u l I , t )  =fl,(O,Rl,,vx,Ull,~). ( 5 )  

The boundary condition ( 5 )  can be applied in spite of the presence of a current in the 
plasma as we assume that the drift electron velocity V is parallel to the plane x = 0 
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and, therefore, the condition for perfectly reflecting walls is satisfied from the equilibrium 
distribution functions of the particles taken in the form (3). 

3. Solution of the problem 

Following the method proposed by Guernsey (1969), we resolve the system (1) at the 
assumptions (2), (3), (4) applying a Fourier transformation with respect to  the position 
variables R I ,  and R’l, and a Laplace transformation with respect to  the time t. In order 
to  be able to  apply a Fourier transformation with respect to x, we extend the definition 
range of the function 

which is the Fourier-Laplace transform of the function fl,(x, R ox ,  u I ,  , t )  in the region 
x < 0, in such a way that the new function f l u  satisfies the equation for f,, with x > 0 
and the boundary condition at x = 0. This can be easily made if one assumes that the 
plane x = 0 is a mirror surface and f l u  are determined by the equalities : 

f l , ( - ~ , k l l , ~ x , ~ ~ ~ , ~ )  = j ’ l a (x ,k~~ ,  - u , , u ~ ~ , o ) .  (7) 

For the Fourier transform of fla: 

J - C C  

we obtain the following expression : 

F l , ( k x ,  kll3 U,, U11 9 0) 

where 

a J - c c  J 

k,  and kl l  are the wavevector components parallel to the axis Ox and the boundary 
surface x = 0 respectively and G,(k, U )  is the Fourier transform of the perturbation at 
the moment t = 0. 

One can see from the expression obtained for the Fourier-Laplace transform of the 
electric charge plasma density : 

1 k)(  e, 1 d3u G,(k’ U) k l l ( A ( W 7  ’) p ( k , o )  = -- 
k .  U--O 2nb(-0, k l , )  

where 
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that if we neglect the influence of the initial perturbation considering the plasma state 
at a moment which is far enough away from the initial one, contributions to  the inverse 
Laplace transform of the electric charge plasma perturbation (10) give only the residues 
at the roots of 

A(w,k) = 0 (13) 

and 

&(U, k l l )  = 0. 

Equations (13) and (14) are the dispersion relations of the propagating bulk and surface 
waves in the plasma respectively (Geurnsey 1969). 

Taking into account the kind of equilibrium distribution function (3) and the equality 

= - i /om exp[i(w + i y  - k . U ) T ]  d.s (15) 
1 

w+iy-k.  v 

where y is a small positive quantity, we obtain the following expression for A ( o , k )  
(Ginzburg and Rukhadze 1970) : 

A(w,k)  = l + x + [ l - J + [  w2 
U - k .  V ,  )] 

a Ikl UT, 

where wPa = ( 4 7 ~ ~ n , / m , ) ' ~ ~  are the plasma frequencies of the particles, uT, = (TJm,)'" 
are their thermal velocities and 

The values of the function W ( x J 4 2 )  one can take from the tables of Faddeeva and 
Terent'ev (1954). 

We divide A(w, k )  and &(U, k 11)  into their real and imaginary parts : 

A(w, k )  = Al(w, k)+iA,(o, k )  (18) 

k "dk, A'- iA2 
TI Io F(  '-IA(w, k)12 &(U, k l l )  = al(w, kl ,)+i&2(o, k l , )  = 1 -A 

Further, we assume that o = o o + i y o  (Iyo/ool << l), where U,, is the frequency and yw 
is the time damping rate of the surface waves, which are determined respectively by: 

and 
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We shall investigate the spectrum of the high-frequency surface waves (a2 >> oii) in 
the long-wavelength approximation : 

(22) 

For the determination of &,(U, k l l )  and &2(w, k l l )  we use both asymptotes of the 
function J + ( x , ) ,  the tabulated values of the probability function and the inequality 
A; >> A:, which is satisfied in the regions where one may use the asymptotes. The 
asymptote of the function J + ( x , )  with xe,i >> 1 (where x ,  = (w-kll .  V/lkloT,, 
xi = w/ lk lvT i )  is valid when x , , ~  E ( 5 ,  00)  and with x,,~ << 1 when x , , ~  E (O,&). When 
x , , ~ ,  = 5 and x,,~, = &the values of the function J + ( x , , ~ ) ,  obtained from the asymptotes 
coincide with high enough precision with their tabulated values. The values of the 
wavenumber k ,  (see equalities (20) and (21)) corresponding to  x , , ~  = 1 are 

k,, = {[(CO - k l l .  V)Z/v:,]-kfi}1/2 and k,, = [ (w’/u:~) - k i ]  ’” 
respectively, where k,, < k,, . Bearing in mind the kind of functions in the integrals in 
the expression for €l(w, k l l )  and cF2(w, k l , ) ,  we divide the integration region into the 
following intervals : 

(i) k ,  E (0, k,,) ,  where k,, = { [(w - kll . V ) 2 / x ~ , v : , ]  - k i }  ‘ I 2  and xe, i  >> 1. Therefore 
in this case one can use the asymptote of J + ( x , , ~ )  for argument values x , , ~  >> 1. 

(ii) k ,  E ( k , , ,  k,,), where k,, = { [ (U  - k l l  . V)’/x:,v:,] - k i  } ‘ I 2 ,  x, ,  = 3-i in the ex- 
pression for g1(w, k l l )  and x,, = in the expression for g2(w, k l l ) .  This interval is in 
the neighbourhood of the point k , , .  As in this region xi >> 1, for the function J + ( x i )  
one can use its asymptote, while for the function J + ( x , )  one uses the tabulated values. 

(iii) k,  E (k , , ,  k,,), where k,, = [ ( w ’ / x ~ , ~ ~ ~ ) -  kfi]”’ and x ,  << 1, x i  >> 1. For the 
integration one uses asymptotes of the function J + ( x e , J  Here k,, < k,, ,  since we con- 
sider a strongly non-isothermal plasma or a plasma with heavy ions. 

(iv) k ,  E (k , , ,  k,,), where k,, = [ (W’ /X? ,U:~) -  kfi]’” (x i*  = & in &‘(CO, k l l )  and x i >  = 
in &Jw, k l I ) ) ,  is in the neighbourhood of the point k, , .  In this region one can use the 
asymptotes of the function J + ( x , )  for x ,  << 1 and the tabulated values of the function 

(v) k ,  E (k , , ,  CO), where x e , i  << 1 and, therefore, one can use the asymptote of the 

To derive the dispersion relation of the high-frequency surface waves, we transform 

1 

J +(x i ) .  

function J + ( x , , ~ )  for small values of its arguments. 

the expression (20) to the form : 

+- 1 kliVTe ( 0 - k l l .  v)’ J3 
7T w - k l l .  Vo;-(o-kli. V)2 { l - [ ( W - k I I .  V ) 2 / 0 ; , ] } ” 2  
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or 
1 kliur, (o-kll . V ) 2  J 3  

&ll(W k / / )  = - 
7l 0 - k / ,  . V mie  - (w - k / ,  . V)2  { 1 - [(U - k / /  * V y / w ; , ] }  1’2 

These expressions are valid when the inequalities: k l ,  # 0, (o-kl l  . V ) 2  # aie and 
(w - k . V)’ # w;, + 3kfjuK, are fulfilled. 

The expression d,,(w, k l , )  tends to zero when k,luTe/(w-k,l . V )  + 0 and k l l u T i / o  4 0 
and, therefore, in the considered frequency region 8, ,(U, kl l )  << dl0(w, k l l ) .  From this 
inequality it follows that the frequency of the surface waves has to be: 

0 0  = woo+wo1, ( 0 0 1  << woo) (27) 

&,o(w, k , ! )  = 0 (28) 

where woo is determined from the equation 

and wol, which includes contributions of the thermal motion of the particles, is deter- 
mined from the expression : 

4. Results and discussion 

The method described leads to  the following dispersion relation and time damping 
rate of the propagating surface waves : 

wherer,, = (T,/4xe2no)”2 istheelectron Debyelength,C, = 1.22,C2 = 1.30,C3 = 0.177 
and A(uTi/uTe) is a small correction depending on the ratio uTi/uTe : 

(32) 
where C, = 4.66 x lo-,,  C, = 9.77, C, = 2.25. 

The values obtained for the coefficients C ,  and C, calculated with enough precision 
coincide with those, indicated in the work by Aliev er a1 (1972), for a plasma without 
current. The value obtained for the coefficient C, differs essentially from that derived 
in the work by Guernsey (1969), because in the latter paper : 

(a) the first term in the expression (25), which is a correction due to the thermal 
effects in the dispersion relation of the surface waves, is not taken into account. This 
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term is obtained as a contribution from the region of integration (i) in the expression 
for &,(a, k l , ) .  It gives practically a principal contribution with the calculation of C,. 

(b)  Only the asymptotes of the probability function are used. They are applied 
also in regions (ii) and (iv) where they are not valid. The supposition that the contribu- 
tions to  the value of C , from the neighbourhoods of the points 

kx, = [(~'//v:~) - kfl] 112 kx, = {[(a - k I /  * V)'/u:eI - k 2 1 1  } l / Z  and 

are negligibly small is used without any justification. 
The difference between the values of the coefficient C, obtained by Aliev et a1 (1972) 

(on the basis of the work by Romanov 1964) and us and by Guernsey (1969) is due to  
the fact that in the latter work only the asymptotes of the probability function have 
been used. 

With k ,, # 0 the dispersion equation for surface waves, derived by Guernsey (1969), 
coincides with the electrostatic approximation of the dispersion equation obtained by 
Romanov (1964); one can see that from the expressions (12) and (23H26). 

Because of the condition w >> wpi a growth of the high-frequency surface waves 
because of the presence of a current in the plasma is not possible (it is not possible that 

One can see from the expression (30) that a Doppler shift of the frequency of the 
propagating surface waves appears because of the presence of the directed electron 
velocity in the plasma. 

When the waves propagate along the current (cos(kI,, V )  = l), the phase velocity 
t'ph = c 7 / v T e + I V (  +(wp,/J2kll), where C, = C,/J2 = 04363 and the group velocity 
Vgr = C7uTe + I VI of the waves has the same direction as the current (forward down- 
stream waves). When cos(kII, V )  = - 1 the phase velocity Vph = C7UTe - I V I  + (wpe/J2k 11) 
ofthe wave has a direction opposite t o  the drift velocity of the electrons (upstream waves). 
In this case, if C7VTe > IVI the group velocity is in the same direction as the phase 
velocity (forward upstream waves) and if C7vTe < IVJ the group velocity is directed 
along the current, ie the waves have opposite phase and group velocities (backward 
upstream waves). 

Therefore the expression (30) describes : (i) a spectrum of forward waves (downstream 
and upstream) which can exist in the frequency region wo > cope/ J2. For the propaga- 
tion of upstream waves, the velocities vTe and IVI must satisfy the condition C7vTe > IV(. 
(ii) a spectrum of backward upstream waves, propagating in the frequency region 
w,, < ope/$ when C7UTe < IV/ .  

I f  C7uTe = IVI the upstream waves transform into localized oscillations at a 
frequency w,, = wpe/J2 and, therefore, in this case only downstream waves propagate 
in the plasma. 

From the comparison of the wavenumbers of the forward waves one establishes that 
the downstream wavenumber is smaller than the upstream wavenumber. This confirms 
the experimental results, reported by AniCin et a1 (1973). 

For the space damping rate Y k  = Im k = -ym/Vgr we obtain the following expres- 
sion : 

Y w  > 0). 

The space damping rate is different for the downstream and upstream waves. For the 
forward waves Y k  > 0 and this value corresponds to  the wave damping (the perturba- 
tions have the form exp( - iwt + ikl l  . r ) ) .  Comparing the space damping rate of the 
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waves in this case we conclude that yk for the downstream waves is less than the one for 
the upstream waves, which is in an agreement with the experimental results reported by 
Anirin et a l ( l973) .  For the backward waves we obtain Y k  < 0 which also corresponds 
to  a wave damping (in this case the wavevector direction k l I  and the direction of propaga- 
tion of the wave energy Y are opposite and, therefore, the perturbations are -exp(y,lrl) 
with y k  < 0). 

For the ratio 6/2, where i = 2x/kl, is the wavelength and 6 is the distance over 
which the wave amplitude falls by a factor e, we obtain : 

for forward downstream waves 
& ( C 7 + F )  

for forward upstream waves 6 

for backward upstream waves. 

One may see that the damping constant 6/% for the upstream waves is less than the one 
for downstream waves. 

In conclusion we mention that experiments have recently begun at Sofia University 
to  test the theory presented here. The experimental results and the theory for a more 
realistic plasma geometry will be presented in a subsequent paper. 
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